If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-490t^2+1290t=810
We move all terms to the left:
-490t^2+1290t-(810)=0
a = -490; b = 1290; c = -810;
Δ = b2-4ac
Δ = 12902-4·(-490)·(-810)
Δ = 76500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76500}=\sqrt{900*85}=\sqrt{900}*\sqrt{85}=30\sqrt{85}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1290)-30\sqrt{85}}{2*-490}=\frac{-1290-30\sqrt{85}}{-980} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1290)+30\sqrt{85}}{2*-490}=\frac{-1290+30\sqrt{85}}{-980} $
| 84=6(x+8) | | w.9=9 | | F(x)=2^x-2 | | 5b+5(b+5)=105 | | -3(8b+3)=111 | | m3=216 | | 7+2n-3=8 | | 14w=9 | | 5+14x2=X | | 2x-5=x=1 | | 10+r/2=17 | | 10*r/2=17 | | 2y/3=4y-8 | | 2x+75=90 | | 7y/9=6y-6 | | 10x-16=9x+29 | | 2y/3=5y-3 | | 18/48=x/93 | | -126=9(5+v) | | -10(p-7)=-100 | | 0.75p=0.45p+100 | | 3x-11x=30 | | 2+x/2=6 | | -4n+5=5 | | 0=r/10+1 | | 8b+5=17 | | 2x+5=17/2 | | m/2+1=3 | | 1=k/5+3 | | 6(a+2)+3(29-3)=39 | | 21.75+2x=31.75 | | x^2-16+74=2x |